Impact of Extreme Heat in the Region

Christopher K. Uejio @ckuejio Florida State University

https://www.maxpixel.net/Climate-Earth-Hour-Planet-Climate-Change-Globe-4776711

Outline

Extreme Heat in Florida

ALC D

BRACE

Vulnerability Mapping

Older Adults (Aged 65+)

Infants, Children, Pregnant People

Chronic Conditions

Low Income, Unhoused

Athletes

Outdoor Workers

https://www.cdc.gov/disasters/extremeheat/specificgroups.html

Jung et al. (2021)

	Cardiovascular disease		
	ED	HSP	
Under 5 years	1.53*		
Over 65 years	2.52*	2.59*	
Over 65 years in nursing facilities	1.02*	_	
Female	_	-1.45*	
Unemployment rate		-1.03*	
Housing units with no automobile	-1.21*	_	
Children under 18 years living in one-parent families	2.16*	_	

Jung et al. (2021)

Garzon-Villaba (2016), Flouris et al. 2018)

Outdoor Workers

- class of worker
- gender and job roles
- compensation
- citizenship

Municipal Workers

Department	Temp. (C)	Temp. range	Heat index	Heat index range	Outdoor (%)
Fleet	0.1 (1.9)	- 5.8 to 2.8	0.3 (2.9)	-7.7 to 5	41.9
Parks and recreation	0.7 (3.8)	-7.4 to 6.5	1.3 (5.7)	-11.6 to 10.1	74.7
Public works	3.3 (0.7)	2.0 to 4.5	5.2 (1.2)	3.0 to 7.1	100.0
Solid waste	0.6 (3.3)	- 8.1 to 8.8	0.2 (5.1)	-11.5 to 13.1	60.0
Underground utility	-0.2 (2.7)	- 5.5 to 3.4	0.3 (3.4)	-6.4 to 3.8	63.8

Jung et al. (2021)

Direct + Indirect Health Costs

Liu et al. (2019)

Outline

Extreme Heat in Florida

Building Resilience Against Climate Effects

Vulnerability Mapping

"My health department has ample expertise to assess public health impacts associated with climate change"

Disagree Agree

Building Resilience Against Climate Effects

Marinucci et al. (2014)

EMBRACE Workshops

What is Your Plan? Important Issues

Communication-wakie Takes, contacts, local help numbers

Transportation-maps, evacuation and alternate routes, public, or metrical
Safetty-personal/lamity, dwelling, postessions, avoiding illness and injury

· FOOD-Special distary tweds for all family complets and pets, enough for all

Water-3 gallors per person per day, Peta 1 gallon per 3 days, extra for reedications, hydrating meats, etc.

Outline

Extreme Heat in Florida

Building Resilience Against Climate Effects

Vulnerability Mapping

Causes of Extreme Heat Mortality	Mechanism	Treatment/ Intervention
Individual	Overheating Body's Systems Fail	Cooling Body Down Rehydration
Societal	Homelessness Living Alone Crime Historical Zoning	Coordinate Public Broadcasts Cooling Refugee Energy Subsidy A/C Dissemination

Common Approaches

Ex: Overlay Analysis Vulnerability + Social Isolation + Lack A/C + Comorbidity courses.washington.edu Chicago Cumulative heat vulnerability index values 7-10 11 12 13 14 15 17 18-22 16 Reid et al. (2009)

Uejio et al. (2012)

Phoenix GLMM	Spatial Correlat	Spatial Correlation Structure: Gaussian			
	Odds Ratio	Std.Err	95% CI	p-value	
Night time Surface Temperature (°C)	1.17	0.040	1.09 : 1.25	<0.001	
Imperviousness Surface (%)	1.01	0.004	1.01 : 1.02	0.001	
Housing Density (100 houses/km ²)	0.82	0.033	0.76 : 0.89	<0.001	
Renting (%)	1.01	0.022	1.00 : 1.01	0.003	
Linguistically Isolated (%)	1.01	0.000	1.00 : 1.02	0.010	
Population aged 65 or older (per 100 people)	0.86	0.045	0.78 : 0.95	0.003	
Hispanic (%)	1.01	0.003	1.01 : 1.02	<0.001	
People Living Alone (%)	1.03	0.005	1.02 : 1.04	<0.001	
Black (%)	1.03	0.007	1.01 : 1.04	<0.001	
Asian (%)	0.93	0.030	0.87 : 0.99	0.015	
Vacant Households (%)	1.03	0.005	1.02 : 1.04	<0.001	
Total Population (per 1000 people)	1.36	0.077	1.21 : 1.51	<0.001	
2) Imperviousness Surface X Housing Density	1.002	0.001	1.001 : 1.003	<0.001	

Applications

Everyone @ risk

Guiding decision making

Assessing Health Vulnerability to Climate Change A Guide for Health Departments

Climate and Health Technical Report Series Climate and Health Program, Centers for Disease Control and Prevention

Arie Ponce Manangan¹, Christopher K. Uejio², Shubhayu Sahat, Paul J. Schramm², Gino D. Marinucci³, Claudia Langford Brown³, Jeremy J. Hess^{10,4}, George Luber³

"Climate and Health Program, Division of Environmental Hazards and Health Effects (DEHHE), National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention (CDC) Atlanta, GA, USA

*Department of Geography, Florida State University, Tallahassee, FL, USA

"Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, USA

Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.

National Center for Environmental Health Division of Environmental Hazards and Health Effects

-1.0

Thanks!

Dr. Jihoon Jung (University Washington) Yoonjung Ahn

Dr. Leiqiu Hu (University of Alabama Huntsville) Dr. Arthur Yancey II (Grady)

CENTERS FOR DISEASE" Control and Prevention

Email: ckuejio@gmail.com Twitter: @ckuejio

NASA HEALTH AND AIR QUALITY APPLIED SCIENCES TEAM Connecting NASA Data and Tools with Health and Air Quality Stakeholders

