Methodology and Technical Overview of 2019 Projection: Part I

Jayantha Obeysekera ('Obey'), Ph.D.,P.E. Director, Sea Level Solutions Center Institute of Environment

Web: https://environment.fiu.edu | http://slsc.fiu.edu Facebook: @FIUWater | Twitter: @FIUWater

Acknowledgement

Sea Level Rise Ad Hoc Work Group

- Ricardo Domingues, University of Miami/National Oceanic and Atmospheric Administration*
- David Enfield, Ph.D., National Oceanic and Atmospheric Administration (retired)
- Nancy J. Gassman, Ph.D., City of Ft. Lauderdale
- Laura Geselbracht, The Nature Conservancy
- Katherine Hagemann, C.F.M., Miami-Dade County
- Jake Leech, Ph.D., Palm Beach County
- Jayantha Obeysekera, Ph.D., P.E., Florida International University (Chair)
- Akintunde Owosina, P.E., South Florida Water Management District
- Joseph Park, Ph.D., P.E., U.S. Department of Interior*
- Michael Sukop, Ph.D., PG, CHg, Florida International University
- Tiffany Troxler, Ph.D., Florida International University
- John Van Leer, Sc.D., University of Miami
- Shimon Wdowinski, Ph.D., Florida International University
- Staff Liaison: Samantha Danchuk, Ph.D., P.E., Broward County
- Compact Staff Support: Lauren Ordway, Institute for Sustainable Communities

Experts Consulted

- Andrea Dutton, Ph.D., University of Florida
- John Hall, Ph.D., Bureau of Land Management
- Robert E. Kopp, Ph.D., Rutgers University
- Glenn Landers, P.E., U.S. Army Corps of Engineers*
- Mark Merrifield, Ph.D., Scripps Institution of Oceanography at the University of California San Diego
- Gary Mitchum, Ph.D., University of South Florida
- William Sweet, Ph.D., National Oceanic and Atmospheric Administration
- Philip R. Thompson, Ph.D., University of Hawaii
- Chris Weaver, Ph.D., Environmental Protection Agency

Southeast Florida (rate of rise)

FIU Sea Level Solutions Center

Recent Trends in Regional Tide Gages ("shift in ~2012")

Mean Sea Level Data at Key West

Factors Affecting Global Mean Sea Level Rise

Mass Changes in Ice Sheets

NASA

Greenland

Grace Satellite

Antarctica

Cazenave et al. 2018

Sea Level Budget

Additional Factors Affecting Regional Sea Level

Δ Relative Sea Level (RSL) of Sweet et al. (2017):

following probabilistic framework of Kopp et al. (2014)

Projections Considered

FIU Sea Level Solutions Center

Sea Level Projections: Deep Uncertainty

FIU Sea Level Solutions Center

NOAA 2017 Regional Projections Methodology

Process Sources IPCC AR5 • **Expert Elicitation** Fingerprints **Glacier Models** • Oceanographic IPCC (CMIP5 • Models) Land-water Storage Empirical ٠ Relationships GIA/Tectonics/Sedi Long-term • background rate ment Compaction modeled using tide gages

Methods: Historical Trends, Climate Models, and Mixed

Global Scenarios Selected for 2019 Projections

GMSL rise Scenario	RCP2.6	RCP4.5	RCP8.5
Low (0.3 m)	94%	98%	100%
Intermediate-Low (0.5 m)	49%	73%	96%
Intermediate (1.0 m)	2%	3%	17%
Intermediate-High (1.5 m)	0.4%	0.5%	1.3%
High (2.0 m)	0.1%	0.1%	0.3%
Extreme (2.5 m)	0.05%	0.05%	0.1%

Why bias towards RCP8.5?

- "In the absence of an ambitious increase in adaptation efforts compared to those currently underway, high to very high risks are expected in many coastal geographies at the upper end of the RCP8.5 *likely* range" (SROCC, 2019)
- "..advises that local governments and regional agencies assess the likelihood of the three SLR scenarios using RCP 8.5, which models climate change without additional efforts to constrain emissions" (Tampa Bay CSAP)

Interpretations of the GMSL rise scenarios (NCA, Climate Science Reprot, Chapter 12)

Scenario	Interpretation		
Intermediate- High	Slightly above high end of <u>very likely range under RCP8.5</u> Middle of <u>likely range under RCP8.5</u> when accounting for possible ice cliff instabilities		
High	High end of <u>very likely range under RCP8.5</u> when accounting for possible ice cliff instabilities		
Extreme	Consistent with estimates of physically possible "worst case"		

Regional Projections – South Florida

Years

Most Recent SE Climate Compact Projections

Moving Mean Sea Level with USACE SLC Scenarios for Key West, FL

In order to capture tooltips, press the print screen ('prt sc') button.

Source: Landers (2018) USACE/ Broward Flood Risk Management Study for Tidally Influenced Coastal Areas; USACE Sea Level Tracker

NOAA et al. 2017 Relative Sea Level Change Scenarios for : KEY WEST

Year

Datums

- Mean sea level
- North American Vertical Datum 1988

2.5 feet NAVD88	2070 sea level		
		NOAA Intermedia High	ite
o.5 feet NAVD88	Mean High Water	40 inches =~3 feet	
-0.5 feet NAVD88	2017 sea level		
-o.8 feet NAVD88	2000 mean sea level		
-2 feet NAVD88	Mean Low Water		

******Numbers rounded for simplicity

NOAA, 2020

Nuisance Flooding

Future Nuissance Flooding

7