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Four questions

• How are climate and sea level changing today?

• What’s driving the sea-level rise?

• What sea-level rise can we anticipate in the future?

• What do we do about sea-level rise?



3

How are climate and sea-level changing today?



For over 800,000 years, carbon dioxide concentrations in the  
atmosphere stayed between about 180 parts per million (during ice  
ages) and 300 parts per million (during warmer ‘interglacial’ periods)
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In 1913, carbon dioxide concentration surpassed 300 ppm. In spring 2014,  
they surpassed 400 ppm for the first time in well over 800 thousand years.
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2019:

411ppm

Most of the increase above the pre-industrial level of about

280 ppm has happened since the mid 1980s.
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Most of the fossil carbon ever emitted has been emitted since1988.
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Our planet is running a fever.
Annual average global average temperatures (relative to 1880-1900)
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Since the early 1990s, scientists have measured changes in the  
height of the sea surface using satellite-borne radars.

JASON-3 Satellite
Artists rendition of Jason-3: NASA/JPL



10Fourth National Climate Assessment, v.1(2017)

Change in Sea Surface Height, 1993–2015

- 1 0

inches/decade
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Sea level is rising at different rates in different places.
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Using statistical and physical models, we can piece together geological  
records and tide gauges from around the world.
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Sea-level rise ismaking

high-tide flooding  

morecommon.https://commons.wikimedia.org/wiki/File:South_Beach_flood,_kayak_in_street.jpg

Sweet et al. (2018)
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The number of high-tide  

flooding days in Miami Beach  

haveincreasedbyaboutafactor  

of four since the1990s.
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Sweet et al. (2018)
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So what’s driving sea-level rise?



So what’s driving this rise?
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(photo: Knut Christianson)

Shrinking ice sheets and glaciers are responsible for a majority of  

the 3 inches of global average sea-level rise from 1993-2017.
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Shrinking ice sheets and glaciers are responsible for a majority of global average sea-levelrise.

Greenland:

About 0.5 inches since1993

Antarctica:

About 0.3 inches since1993

Harig et al. (2015, 2016); WCRP (2018); Rignot et al. (2019)

Mountain glaciers:

About 0.7 inches since1993



And the potential for sea-level rise from land-ice loss is muchlarger.

Lemke et al. (2007); Bamber et al. (2001); Lythe et al. (2001) 18
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Shrinking ice sheets and glaciers are responsible for a majority of global average sea-levelrise.

Contributions over 1993–2017  
out of about 3 inches total

50%

Milne et al. 2009 19



Most of the rest of global rise is due to the ocean expanding in volume asit warms.

Contributions over 1993–2017  
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Milne et al. 2009 20



Changes in the water  stored  on  land  (e.g., in groundwater)accounts for a smallamount.

40%

Milne et al. 2009; budget based on WCRP Global Sea Level Budget Group (2018)) and Rignot et al. (2019) 21

10%

Contributions over 1993–2017  
out of about 3 inches total

50%



The story becomes more complex when you start looking at specificplaces!
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Contributions over 1993–2017
out of about 4.7 inches total in Miami Beach

1.3”



In parts of Florida, the land is sinking slightly due to natural processes.

Ocean–atmosphere  

interaction

Vertical land  

motion

Density
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Ocean circulation

Vertical land  

motion

Contributions over 1993–2017
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Ice  
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Shrinking land ice does not cause the same amount of sea-level riseeverywhere.
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Changes in winds and currents also contribute to regional sea-levelrise.
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What sea-level rise can we anticipate in thefuture?
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To project future changes, we need to project all these processes.
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Our open-source framework (±modifications) has been  

widely used in US stakeholder-drivenassessments

0 github.com/bobkopp/LocalizeSL



A key driver of the range of possible futures is the range of possible humanemissions.
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(photo: Knut Christianson)
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Another key driver of the range of projections is the incomplete, rapidly  

evolving  scientific understandingof how ice sheets and the oceaninteract.



Different icesheet treatments givesimilar globalprojections through 2050
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Different ice sheet treatments give similar projections under low emissions
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High emissions makes the system much harder to project
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What do we do about sea-levelrise?
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Do we modify our communities to accommodate occasionalflooding?

Manasquan, NJ
Manasquan, NJ – Tony Cenicola, The New York Times(https://www.nytimes.com/2017/06/16/realestate/hurricane-sandy-rebuilding-jersey-shore- 35

http://www.nytimes.com/2017/06/16/realestate/hurricane-sandy-rebuilding-jersey-shore-
http://www.nytimes.com/2017/06/16/realestate/hurricane-sandy-rebuilding-jersey-shore-


Remember: elevating houses is of limited value if  
you don’t also protect critical infrastructure!

Manasquan, NJ
Manasquan, NJ – Tony Cenicola, The New York Times(https://www.nytimes.com/2017/06/16/realestate/hurricane-sandy-rebuilding-jersey-shore- 35

Do we modify our communities to accommodate occasionalflooding?

http://www.nytimes.com/2017/06/16/realestate/hurricane-sandy-rebuilding-jersey-shore-
http://www.nytimes.com/2017/06/16/realestate/hurricane-sandy-rebuilding-jersey-shore-


Do weharden?

36BIG-Bjarke Ingels Group(2017)

Proposed East Side Coastal Resiliency Project



Do weharden?

36BIG-Bjarke Ingels Group(2017)

But remember: you also need to plan for those  
occasions when hard protection fails.

Proposed East Side Coastal Resiliency Project



37

Do we expand protective natural infrastructure?

New oyster beds in Jamaica Bay
Photo: Jamaica BayEcowatchers
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Do we relocate to higherground?

Oakwood Beach, Staten Island
Nathan Kensinger, Curbed (https://ny.curbed.com/2016/10/27/13431288/hurricane-sandy-staten-island-wetlands-climate-change)



However we chose to adapt, the starting point is climate changemitigation.
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However we chose to adapt, the starting point is climate changemitigation.

Regardless of emissions, likely global

mean sea-level rise of about 0.5-1.5 ft

between 2000 and2050.

Under current emissions, likely about

2-5 ft by 2100 (high-end of 6 ft).

Under low emissions,likely about 1-3  

ft by 2100 (high-end of 4 ft).
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