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Four questions

* How are climate and sea level changing today?
* What’s driving the sea-level riser?

* What sea-level rise can we anticipate in the future?

e What do we do about sea-level rise?



How are climate and sea-level changing today?



For over 800,000 years, carbon dioxide concentrations in the

atmosphere stayed between about 180 parts per million (during ice
ages) and 300 parts per million (during warmer ‘interglacial” periods)
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For over 800,000 years, carbon dioxide concentrations in the

atmosphere stayed between about 180 parts per million (during ice
ages) and 300 parts per million (during warmer ‘interglacial’ periods)
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In 1913, carbon dioxide concentration surpassed 300 ppm. In spring 2014,
they surpassed 400 ppm for the first time in well over 800 thousand years.
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In 1913, carbon dioxide concentration surpassed 300 ppm. In spring 2014,
they surpassed 400 ppm for the first time in well over 800 thousand years.
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In 1913, carbon dioxide concentration surpassed 300 ppm. In spring 2014,
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In 1913, carbon dioxide concentration surpassed 300 ppm. In spring 2014,
they surpassed 400 ppm for the first time in well over 800 thousand years.
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In 1913, carbon dioxide concentration surpassed 300 ppm. In spring 2014,
they surpassed 400 ppm for the first time in well over 800 thousand years.
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In 1913, carbon dioxide concentration surpassed 300 ppm. In spring 2014,
they surpassed 400 ppm for the first time in well over 800 thousand years.
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In 1913, carbon dioxide concentration surpassed 300 ppm. In spring 2014,
they surpassed 400 ppm for the first time in well over 800 thousand years.
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Most of the increase above the pre-industrial level of about
280 ppm has happened since the mid 1980s.



Most of the fossil carbon ever emitted has been emitted since1988.

Billions of tonnes of carbon dioxide per year

Global emissions in 2018: about 42 billion tonnes

Cumulative fossil emissions (Gt CO,)
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Global emissions in 2018: about 42 billion tonnes
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Most of the fossil carbon ever emitted has been emitted since1988.

Billions of tonnes of carbon dioxide per year

Global emissions in 2018: about 42 billion tonnes

Cumulative fossil emissions (Gt CO,)
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Our planetis running a fever.

Annual average global average temperatures (relative to 1880-1900)
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Our planetis running a fever.

Annual average global average temperatures (relative to 1880-1900)
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Between 1980 and 2018, temperatures rose at an average rate of about 0.2°C (0.3°F)
per decade. The 2018 average global temperature was about 1.1°C(2°F) above the

late nineteenth century average. The last five years are most likely the warmest five
years onrecord.



Since the early 1990s, scientists have measured changes in the
height of the sea surface using satellite-borneradars.

~
.\ ;.‘
1 N A p
g 20

B0 Ty v

SER Y o,
L
Iﬂi}:ﬁ:{ﬁ

o]
£
- -
®

&)
W

Ny v N 17:L°'§ @
Ay LI -
v . e ',v !.’ ',"".‘2“"?!'“'.
TWa ToW 1l Fge G I Ay TR
5 -J'l _..,'.b.'k "'." “"‘-"l"r. j'.?
S O A7 e e O APETELL

Artists rendition of Jason-3: NASA/JPL



Sea level is rising at different rates in different places.

Change in Sea Surface Height, 1993-2015
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But the global trend is clear:
Global average sea level is rising at an accelerating rate.
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Global average sea level is rising at an accelerating rate.

8 1 | 1 | Ll
— TP-A drift corrected (Ablain), trend = 3.08 + 0.39mm yr-’ 3"
— TP-A drift corrected (Watson/Dieng), trend = 3.13 mm yr"
— TP-A drift corrected (Beckley), trend = 3.12 mm yr'
— no TP-A drift correction, trend = 3.35 mm yr'
= °
@)
S 27’
D ~4 mm/yr
5 al 1.6”/decade
(©
O,
U) 1 ”
% 21 ~2.5 mm/yr .
O 1”Idecade
‘© A ,
o Of A N 10
o | VX
—2 1 1 1
N O o < 00) N O
(o)) o (@) (@) (@) — —
(o)} (o)} - o o o o
— . N N N N N

W(CRP Global Sea Level Budget Group (2018) 11



Using statistical and physical models, we can piece together geological
records and tide gauges from around the world.
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Using statistical and physical models, we can piece together geological
records and tide gauges from around the world.
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Using statistical and physical models, we can piece together geological

records and tide gauges from around the world
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Using statistical and physical models, we can piece together geological
records and tide gauges from around the world.
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- We're seeing the fastest rise in sea-levels in
nearly 3,000 years: ofa.bo/[9gS #ActOnClimate

A}
R % Seas Are Rising at Fastest Rate in Last 28 Centuries

=" Scientists reported Monday that flooding in coastal communities
& = Was largely a result of greenhouse gas emissions, and likely to
grow worse.
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Vf Kobb et.él. (.2016); Kempetal. (2018); instrumental data fromHay et al. (2015) and Neremet al. (2018)
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J , ‘The number of high-tide
“#flooding days in Miami Beach
N have increased by about a factor

,of four since the 19905
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So what’s driving sea-level rise?
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Shrinking ice sheets and glaciers areresponsible for amajority of
the 3 inches of global average sea-levelrise from 1993-2017.

(photo: Knut Christianson)




Shrinking ice sheets and glaciers areresponsible for amajority of global average sea-level rise.

Antarctica:

Greenland: About 0.3 inches since 1993
About 0.5 inches since 1993

Mountain glaciers:
About 0.7 inches since 1993

Harig etal. (2015, 2016); WCRP (2018); Rignot et al. (2019) 17



And the potential for sea-level rise from land-ice loss is much larger.

Lemke et al. (2007); Bamberetal. (2001); Lythe et al. (2001) 18



And the potential for sea-level rise from land-ice loss is much larger.
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And the potential for sea-level rise from land-ice loss is much larger.
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And the potential for sea-level rise from land-ice loss is much larger.
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And the potential for sea-level rise from land-ice loss is much larger.
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Shrinking ice sheets and glaciers areresponsible for amajority of global average sea-level rise.

Contributions over 1993-2017
out of about 3 inches total

Ice ]
melting 50%

Milne et al. 2009 19



Most of the rest of global rise is due to the ocean expanding in volume asit warms.

Contributions over 1993-2017
out of about 3 inches total

Ice )
melting 50%

Milne et al. 2009 20



Changes in the water stored on land (e.g., in groundwater) accounts for asmallamount.

Contributions over 1993—-2017

, Terrestrial water
out of about 3 inches total

storage
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melting 50%
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Milne et al. 2009; budget based on WCRP Global Sea Level Budget Group (2018)) and Rignot et al. (2019) 21



The story becomes more complex whenyou start looking at specific places!

Milne et al. 2009

Ice
melting

Terrestrial water
storage

22



The story becomes more complex whenyou start looking at specific places!

Contributions over 1993—-2017
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out of about 4.7 inches total in Miami Beach
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. A Terrestrial water
out of about 4.7 inches total in Miami Beach

storage

Ice
melting

Milne et al. 2009 22



In parts of Florida, the land is sinking slightly due to natural processes.

Contributions over 1993—-2017

Terrestrial water
out of about 4.7 inches total in Miami Beach
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Shrinking land ice does not cause the sameamount of sea-level riseeverywhere.

Contributions over 19932017

Terrestrial water
out of about 4.7 inches total in Miami Brach

storage

Ice
melting [.4”

modulated by
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Milne et al. 2009 24



Changes in winds and currents also contribute to regional sea-level rise.

Contributions over 19932017

out of about 4.7 inches total in Miami Beach
Ocean—atmosphere
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Milne et al. 2009
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What sea-level rise can weanticipate in thefuture?
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Toproject future changes, weneed to project all these processes.

Framework of Kopp et al. (2014)
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Toproject future changes, weneed to project all these processes.

Framework of Kopp et al. (2014)
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Toproject future changes, weneed to project all these processes. RUTGE RS

Institute of Earth, Ocean, anc
Atmospheric Sciences

Terrestrial water
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Toproject future changes, weneed to project all these processes.

Framework of Kopp et al. (2014)
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Toproject future changes, weneed to project all these processes.

Framework of Kopp et al. (2014)

Mixed methods

Ice
melting

modulate ravitational +

o ——
=N
=
1\

[
'\\‘é;.

Ocean—atmosphere
Interaction

Terrestrial water
storage

Historical demand/

population relationship__}

RUTGERS

Institute of Earth, Ocean, anc

Atmospheric Sciences

27



Our open-source framework (+ modifications) has been RUTGERS
widely used in US stakeholder-driven assessments

Atmospheric Sciences
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A Keydriver of the range of possible futures is the range of possible humanemissions.

2100 WARMING PROJECTIONS R
Emissions and expected warming based on pledges and current policies ©® Tracker
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Another key driver of the range of projections is the incomplete, rapidly
evolving scientific understanding of how ice sheets and the oceaninteract.

photo: Knut Christianson)
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Different ice sheet treatments give similar global projections through 2050
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Different ice sheet treatments give similar projections under low emissions
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High emissions makesthe system much harderto project
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What dowedo about sea-level rise?
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Manasquan, NJ — Tony Cenicola, The New York Times (https://www.nytimes.com/2017/06/16/realestate/hurricane-sandy-rebuilding-jersey-shore-
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Do weharden?

Proposed East Side Coastal Resiliency Project

BIG-Bjarke Ingels Group (2017) 36



Do weharden?

Proposed East Side Coastal Resiliency Project
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But remember: you also need to plan for those
occasions when hard protection fails.

BIG-Bjarke Ingels Group (2017) 36



Do weexpand protective natural infrastructure?

Photo:Jamaica Bay Ecowatchers



Do werelocate to higher ground?
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Howeverwechose to adapt, the starting point is climate change mitigation.
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CAT projections and resulting emissions gaps in L
meeting the 1.5°C Paris Agreement goal vs 2°C Cancin goal Dec 2019 update
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The “gap” range results only from uncertainties in the pledge projections.
Gaps are calculated against the mean of the benchmark emissions for 1.5°C and 2°C.
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CAT projections and resulting emissions gaps in
meeting the 1.5°C Paris Agreement goal vs 2°C Cancin goal
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The “gap” range results only from uncertainties in the pledge projections.
Gaps are calculated against the mean of the benchmark emissions for 1.5°C and 2°C.

Regardless of emissions, likely global

mean sea-level rise of about 0.5-1.5 ft
between 2000 and2050.

Under current emissions, likely about
2-5 ft by 2100 (high-end of 6 ft).
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The “gap” range results only from uncertainties in the pledge projections.
Gaps are calculated against the mean of the benchmark emissions for 1.5°C and 2°C.

Regardless of emissions, likely global
mean sea-level rise of about 0.5-1.5 ft

between 2000 and 2050.

Under current emissions, likely about
2-5 ft by 2100 (high-end of 6 ft).

Under low emissions, likely about -3
ftby 2100 (high-end of 4 ft).

39



Greenhouse Gas Emissions and
Future Sea-Level Rise

Robert Kopp

Atmospheric Sciences

. Climate
W/ Impact Lab

'S robert.kopp@rutgers.edu Southeast Florida’s 2019 Unified SeaLevel Projection: The Foundations
"# @bobkopp June 18, 2020



mailto:robert.kopp@rutgers.edu
mailto:opp@rutgers.edu

