Using 3D Visualization Tools for Integrated Decision Making and Risk Characterization

J. Greg Dobson and Jim Fox December 6th, 2012

Introduction

- Background decision making, traditional approaches, why 3D visualizations
- How is 3D accomplished, what are the key components
- Adding rising water simulations to 3D visualizations
- Generating and distributing 3D content

BACKGROUND

Decision Making Building Blocks

responsibility and assign resources?

Common Tools of the Decision Maker

Charts and Tables and Maps – "Oh My"

The Great Map Issue

 The reality is that most people, including many decision makers, have difficulty with "correctly" interpreting traditional 2D maps

Modern Flood Map Example

Historic Flood Map

NOAA's Online Sea-Level Rise Viewer

3D View of Downtown Ft. Lauderdale

Why 3D?

- Situational awareness
- 3D helps make data more relevant to the user
- Better suited for demonstrating the need for a proposed solution or action
- An "attention getter"
- Some Applications include:
 - Scenario planning
 - Visualizing uncertainty
 - Risk Characterization

Ensuring Data/Model Credibility

- NOAA's Three A's for Photo Visualizations
 - Accuracy
 - Accountability
 - Accessibility
- Other key questions to consider
 - Do the images / models look real
 - Are the visualizations defensible
 - How representative are the views
 - Are the visualizations sufficient for the project

HOW TO GET TO 3D

Basic Parts of a 3D Visualization

- Elevation data
- Imagery
- Key Infrastructure
 - Buildings
- Visual Overlay of Interest
 - Flooding
 - Population vulnerability
 - Plume cloud

Building the Base – Elevation is Key!!

Building the Base – Elevation is Key!!

Scale Considerations

Types of 3D Building Models

- 3D Building Model Symbology
 - Most basic, easiest to generate
 - Least detailed / realistic
- Sugar Cubes
 - Intermediate, assuming data already exists
 - Resembles actual environments, can do analysis
- Detailed Models
 - Advanced, most detailed

3D Building Symbology Approach

3D Building Model Symbology

Coast looking west

3D Building Model Symbology

Sugar Cube Approach

Coast looking west

Port looking north

Downtown looking east

Detailed Building Model Approach

Coast looking west

Port looking north

Downtown looking east

RISING WATER OVERLAY

FRAMEWORK FOR CLIMATE ASSESSMENTS

- Severity of impacts depend on the vulnerability of the system
- How are resources or services affected?
- How do we measure what it is we value?

Climate Assessment Conceptual Model of Linked Relationships Sea Level Rise and Storm Surge Population, Sea Level Rise Development and Storm Surge Salt Water Wetlands Infrastructure Intrusion Inundation Inundation Freshwater Homes **Aquifers** Limited Freshwater **Mobility Aquifers Businesses Natural Evacuation Habitat Systems** Routes **Destruction**

Rising Water Simulations

- With elevation and 3D models in place, can now do rising water simulations
 - Flooding
 - Storm surge
 - Sea level rise
- Simulations can only be as detailed as the data that feed into them
 - Bathtub approach vs. USGS hydro models

Rising Water in the Mountains

Category 1 and 2 Storm Surge

Category 1 - 3 Storm Surge

Category 1 - 4 Storm Surge

Category 1 - 5 Storm Surge

CONTENT GENERATION AND DISSIMINATION

Content Development Platforms

- Esri's ArcGIS
 - 3D Analyst Extension
 - ArcScene
 - ArcGlobe
 - CityEngine
- Trimble SketchUp
 - Formerly Google SketchUp
- Unity3D
- NewTeck's LightWave

Dissemination Products and Platforms

- Posters (2D and 3D)
- Movies
 - Desktop / Viz Wall
 - Web (YouTube)
 - Immersive (GeoDome)
- Interactive Viewers
 - Desktop
 - Web
 - TouchScreen / TouchTable

3D Graphic Examples

Challenges

- Effectively and efficiently incorporating realworld data (GIS data) into 3D visualizations
- Integrating with existing GIS infrastructure
 - Data Storage, database connections
- Technology
 - Software learning curves
 - Hardware
- Resources
 - Time
 - Money

Summary

- 3D Visualization tools provide an alternative "look" at real world issues (rising water)
- Creating 3D visualizations correctly and realistically impacts the final products
- Its all about the decision, make the visualizations relevant and meaningful for the user

