Valuing Resilient Distributed Energy Resources: Combined Heat and Power & the Modern Grid

Grace Relf

Regional Climate Action Plan Implementation Workshop: **Resilient Energy Systems**

September 28, 2018

The American Council for an Energy-Efficient Economy is a nonprofit 501(c)(3) founded in 1980. We act as a catalyst to advance energy efficiency policies, programs, technologies, investments, & behaviors.

Our research explores economic impacts, financing options, behavior changes, program design, and utility planning, as well as US national, state, & local policy.

Our work is made possible by foundation funding, contracts, government grants, and conference revenue.

aceee.org @ACEEEdc

Agenda

- Why do we need to value resiliency?
 - Resiliency metrics
 - Risks & costs of poor energy performance
 - Stakeholders & misallocation of capital
- Leaders in valuing resiliency
- The Distributed Energy Resource Resiliency Value
- Next steps

Resiliency metrics

- Resiliency:
 - Ability of an energy system to withstand "high-consequence, lowprobability" events & regain normal operational activity
- Reliability:
 - The degree to which a resource is available
 - Ability to withstand "low-consequence, high probability" events
 - Distribution system performance metrics already exist on interruption frequency & duration (called SAIFI, SAIDI, & CAIDI)
- Power quality:
 - The degree to which an electricity supply maintains its voltage & frequency and is free of distortions

Risks of poor energy performance

Category	Risk metric examples	
Resiliency	Lost lives	
	Lost confidence in a city or region	
	Costs of energy lost to critical facilities	
	Transportation system losses	
Reliability	Lost revenue	
	Increased personnel time	
Power quality	Damaged equipment	
	Lost data	

Costs of Poor Energy Performance

Study Author	Cost category	Cost (\$ billion/year)
Galvin Electricity Initiative	Losses due to power outages	\$150
Hartford Steam Boiler	Power outages	\$100
Institute of Electrical & Electronics Engineers	Poor power quality	\$119-188
Electric Power Research Institute	Outages to whole US economy	\$120-\$190
Congressional Research Service	Weather-related outages longer than five minutes	\$25-\$70

Misallocation of capital

- CHP systems require large upfront capital investments
- Returns from increased energy efficiency can be marginal
- Data to evaluate risk of poor grid performance are limited

Resiliency benefits are not fully considered in project cost screenings.

Stakeholders in valuing resiliency

- Utilities: resource planning
- Cities: resiliency planning
- Investors & shareholders
- Individual facilities
 - Example: Agricultural company
- Industries
 - Accounting industry
 - Example: Data centers

Stakeholder: Insurance industry

- Shifting risk analyses to changing risks
- Energy disruptions trigger the need for insurance products
- Interviews with 12+ insurance companies:
 - Zero products that explicitly reflect reduced risk from CHP

No clear guidance exists on how to value avoided downtime.

Leaders in valuing resiliency

- Identifies opportunity zones for resilient infrastructure
- Provides a clear cost-benefit analysis framework
- Provides funding for selected microgrid & CHP projects

Selected NY Prize resiliency metrics

Metrics for the value of a hospital staying online during a disaster	Metric type	Exemplary value
Likelihood of backup generation failure	Percentage	15%
Annual emergency visits per capita	Visits/capita	0.40
Increase in emergency visits during a natural disaster	Percentage	25%
Cost of time	2007 dollars/hour	\$28.11
Death rates per capita from unintentional injuries	Deaths/person/year	0.000509
Value of a statistical life	2008 dollars	\$5.8M

Leaders in valuing resiliency

- Performance Excellence in Electricity Renewal
- Sustainability Accounting Standards Board
- Hartford Steam Boiler insurance company
 - Markets & blackout risk model
 - "Energy shortfall" risk underwriting

The Distributed Energy Resource Resilience Value (DERRV)

- Calculate:
 - Probable downtime associated with relying on the grid:
 - (Probability that X type of event will happen in location Y) × (Probability that X type of event will cause downtime) × (Estimated length of downtime)
 - Probable downtime associated with relying on CHP:
 - (Probability that X type of event will happen in location Y) × (Probability that X type of event will cause downtime with CHP in place) × (Estimated length of downtime with CHP)
- Compare the two values

Data needs for the DERRV

Category	Data & metrics	Outstanding data needs
Reliability of the electric grid	 Weather models SAIFI/SAIDI/CAIDI & major event data Models of weather impact on specific systems Models of other threats & impacts to grid 	Localized disaster impacts
Reliability of backup generators	Typical backup generator performanceData on fuel delivery constraints	Attributes influencing generator performance
Costs of downtime		
CHP & microgrid performance & costs	 CHP & microgrid program performance and evaluation reports CHP & microgrid developer case studies 	Major gaps remain

Next steps

- Fill in data gaps & increase data sharing
- Engage stakeholders
- Apply the DERRV!
- Continue to refine the metric & process

Report at http://aceee.org/white-paper/valuing-der

000000000

Upcoming ACEEE Conferences

Behavior, Energy, and Climate Change Conference	October 7	Washington, DC
2018 Rural Energy Conference	October 22	Atlanta, GA
National Convening on Utilities and Electric Vehicles	November 14	Atlanta, GA

The top convener in energy efficiency. aceee.org/conferences