

Energy Efficiency & Renewable Energy

U.S. Department of Energy Financing Mechanisms and Resilience Tools

Anne Hampson ICF

CHP Financing Primer

- Summary of financing options
- Considerations for what financing option is right for your project
- Case study examples for each option

Available at:

https://www.energy.gov/eere/amo/downloads/combin ed-heat-and-power-chp-financing-primer-june-2017

Financing Goals

- CHP ownership and financing strategy is all about allocating project risks and responsibilities
- A thorough understanding of the goals of your project and the risks you are willing to take on will determine your best financing option
- Ownership strategies have changed over time and will continue to evolve

CHP Financing Options

Utility-Owned CHP Structure

Simplified Structure for Utility-Owned CHP

Florida Public Utilities / Rayonier 21 MW CHP Overview – Eight Flags CHP

CHPK.COM/EIGHT-FLAGS-ENERGY

Source: Chesapeake Utilities, http://www.chpk.com/eight-flags-energy/

Typical Financing Timeframe

CHP Capacity by Ownership

Self 3rd Party Joint Utility Unknown

Source: DOE/ICF CHP Installation Database (U.S. installations as of Dec. 31, 2017)

CHP System Size Impact on Ownership

Source: DOE/ICF CHP Installation Database (U.S. installations as of Dec. 31, 2015)

EPA dCHPP Database

- The CHP policies and incentives database is an online U.S. CHP policy database hosted by the Environmental Protection Agency
- dCHPP allows users to search for CHP policies and incentives at federal, state, and local levels
- Policy/incentive results include information such as:
 - Summary info
 - CHP eligibility requirements
- Information is updated annually

Available at:

https://www.epa.gov/chp/dchpp-chp-policies-and-incentives-database

Combined Heat and Power (CHP) Partnership SHARE (f) (p) (p)Combined Heat and Power dCHPP (CHP Policies and (CHP) Partnership Home **Incentives** Database) About Us Discover CHP dCHPP (CHP Policies and incentives database) is an online database that allows users to search for Project Development CHP policies and incentives by state or at the federal level. dCHPP has two primary purposes: Energy Star CHP Awards · Policy makers and policy advocates can find useful information on significant state/federal policies Webinars and Presentations and financial incentives affecting CHP. Documents and Tools CHP project developers and others can easily find information about financial incentives and state/federal policies that influence project development. Frequent Questions The glossary contains definitions for the policy and incentive types included in dCHPP Please select one or both of the search filters to return the desired results. To select more than one option in a search filter (e.g., New York and Texas in the "Search by State" filter), hold down the Control key on the keyboard while selecting the options. You can then sort the results by selecting the desired column heading. To start over, select "Reset Filters." Some links within dCHPP entries may exit the epa.gov site EXIT Search by State: Search by Policy/Incentive Type: Reset Filters » Show Al District of Columbia Bond Commercial PACE Georgia Solar and CHP Sales Tax Exemption Last Updated 11/16/2012 te centive Type Tax State/Federa Florida Department of Revenu Administra Office 7/1/1997 Date Incentive Size and The state of Florida has created a permanent sales and use tax exemption for CHP system Funding Source The exemption applies to expert of machinery and equips nent used at a fixed location for the purpose of producing electr resulting from the burning of boiler fuels other than residual oil. However, such energy must be primarily used for manufacturing, processing Fligible Decinion pounding or producing for sale items of tangible personal property in to burn both residual and non-residual fuels, the exemption is prorated. Eligible Fuel Does Not Specify Eligible Project Size Does Not Specify Minimum Efficiency Does Not Specify Required (%) http://programs.dsireusa.org/system/program/detail/24 Additional Website 1 http://dor.myflorida.com/doi

Timely Resiliency Incentives/Financing Programs

U.S. Economic Development Administration 2018 Disaster Supplemental

FEMA-4337-DR, Florida Disaster Declaration as of 01/10/2018

Facts:

- Congress approved \$600 in FY2018 funding for economic recovery in disaster areas.
- Atlanta office \$147 million allocation
 - EAA funds can be awarded to assist a wide variety of activities related to disaster recovery focused on economic development, including economic recovery strategic planning grants and construction assistance.
- Includes "Resiliency projects to increase the ability of a community or region to anticipate, withstand, and bounce back from future economic injuries and disasters."
- More info:

https://www.eda.gov/programs/disasterrecovery/2018-supplemental/

Timely Resiliency Incentives/Financing Programs

2018 Pre-Disaster Mitigation Grant Facts:

- Congress approved \$235 million in FY2018 funding for economic recovery in disaster areas
- States receive \$575K allocation and remaining funds are awarded competitively
- Local governments are eligible subapplicants
- After natural hazard mitigation projects, FEMA will select projects to fund "Generators for critical facilities identified in a FEMAapproved mitigation plan and meet the standards set by local building codes."
- Application period is Oct 1-Jan 31, 2019
- More info:
- https://www.fema.gov/pre-disaster-mitigationgrant-program

Timely Resiliency Incentives/Financing Programs

Funding Opportunities:

- Building U.S. Communities' and Businesses' Resilience to Extreme Events – NOAA Climate Program Office
- EPA Smart Growth Grants and Other Funding
- FEMA Preparedness Grants
- FEMA Hazard Mitigation Assistance
- USDA Natural Resources Conservation Service
- More info: https://toolkit.climate.gov/content/funding -opportunities

The Better Buildings Financing Navigator

The Navigator is an online tool that helps public and private organizations find financing solutions for energy efficiency projects.

With the Navigator, you can...

Explore: Learn the basics of the efficiency financing market

Find: Answer a few simple questions to see which financing options might be a fit for your project

Connect: Speak to Better Buildings Financial Allies who may be able to finance your project

Available at: <u>https://betterbuildingssolutioncenter.energy.gov/financing-navigator</u>

Who are the Better Buildings Financial Allies?

- 30+ leading financing companies that have committed to funding efficiency, renewables, and generation projects
- Primarily project financing companies
- Some institutional investors (e.g. Citi) and specialty providers (e.g. Energi)
- Active in all sectors including government, C&I, MUSH, multifamily, and residential across the U.S.
- Represent large, medium, and start-up companies
- They are available to help you!

CHP for Resiliency Accelerator

CHP for Resiliency Accelerator

- Purpose:
 - Incorporate consideration of CHP into resiliency planning efforts at the city, state, and utility levels
- Collaborate with Partners to:
 - Assess opportunities for CHP to maintain critical operations
 - Document Partner process for replicability
- Key Materials Developed:
- 1. DG for Resiliency Planning Guide
- 2. CHP for Resiliency Screening Tool
- 3. DER Matrix Issue Brief
- 4. Partner Profiles

	er ding	JS°		ALL ▼	SEARCH SOLUTIC	PROGRAMS ~	Contact Us
SOLUTIONS		PF	OGRAMS & PA	RTNERS	SUMMIT & SWA	P LEAR	NMORE
ACCELERATORS	ALLIANCE	BETTER PLAN	ITS CHALLENGE	СНР СО	MMUNITIES 50001 REA	DY HOME ENERGY SCORE	WORKFORCE

COMBINED HEAT AND POWER FOR RESILIENCY

The **Combined Heat and Power (CHP) for Resiliency Accelerator** will support and expand the consideration of CHP solutions to keep critical infrastructure operational every day and night regardless of external events. As a collaborative effort with states, communities, utilities, and other stakeholders, Partners will examine the perceptions of CHP among resiliency planners, identify gaps in current technologies or information relative to resiliency needs, and develop plans for communities to capitalize on CHP's strengths as a reliable, high efficiency, lower emissions electricity and heating/cooling source for critical infrastructure.

https://betterbuildingsinitiative.energy.gov/accele rators/combined-heat-and-power-resiliency

The Distributed Generation (DG) for Resilience Planning Guide

 Web-based guide that provides information and resources on how distributed generation (w/a focus on CHP), can help communities meet resilience goals and ensure critical infrastructure remains operational regardless of external events.

Available at: https://resilienceguide.dg.industrialenergytools.com/

Two Main Sections to the Guide

- Stakeholder Action Pages
 - Decision Makers
 - Utilities
 - Take Action
 - Resource Library
- Information and resources for resiliency planners to actively use to incorporate CHP in their planning process.

- 101 Pages: Background Information
 - Critical Infrastructure
 - Combined Heat and Power
 - Solar + Energy Storage
 - Microgrids
 - Applying CHP in Critical Infrastructure
 - Case Studies

Take Action Page

- Provide user with an efficient approach to quickly assess a critical infrastructure portfolio for potential DG deployment, and/or;
- Provide a framework for reviewing existing resiliency strategies and policies, and developing new programs.
- Steps 1 & 2: Identify and Rank CI Sectors and Subsectors Conducive to DG Technologies
 - Provides users with criteria for identifying and prioritizing CI sectors conducive to DG technologies
- Step 3: Individual Site Assessments and Next Steps
 - <u>Individual Site Assessments</u>: Tools that can be used to perform individual site assessment of DG technologies are provided for users:
 - CHP Site Screening Tool
 - Solar + Storage Screening Tool
 - Microgrid Modeling Tools

Table 2. Critical Infrastructure Sub-Sectors Conducive to CHP				
CI Sector	Sub-sector Conducive to CHP			
Transportation	Airports			
Information Technology	Data Centers			
Government Facilities	College/Universities Schools Prisons Military Bases			
Emergency Services	Police Stations Fire Stations			
Water and Wastewater Systems	Waste Water Treatment Plants			
Food and Agriculture	Food Processing Food Distribution Centers Supermarkets			
Commercial Facilities	Lodging Multi-Family Buildings			
Healthcare and Public Health	Hospitals Nursing Homes			
Healthcare and Public Health	Chemicals / Pharmaceuticals Food Processing			

CHP for Resilience Screening Tool

Live Demo

Issue Brief – Examining the Performance of Different DERs in Disaster Events

- Explores how different DERs are impacted by various types of natural disasters (flooding, high winds, extreme temperature, etc.)
- Goal: To assist stakeholders in evaluating the technology options best able to meet their resilience priorities

Matrix of DER vulnerability to weather events

	Flooding	High Winds	Earthquakes	Wildfires	Snow/Ice	Extreme Temperature
or Storm Events		e		\$	*	
Battery Storage	Θ	0	\ominus	\bigcirc	0	\ominus
Biomass/Biogas CHP	Θ	Θ	\bigcirc	\bigcirc	0	0
Distributed Solar	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Distributed Wind	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Natural Gas CHP	0	0	\bigcirc	\bigcirc	0	0
Standby Generators	\ominus	0	\bigcirc	\bigcirc	\bigcirc	0

Design considerations and other strategies to increase resilience of DERs

Natural Disaster or Storm Event	en loooding	High Winds	Carthquakes	Settion	Contraction of the second	Ettleme lemoerature	/
Resource		e	8	8	*		
Battery Storage	Elevate equipment above flood and storm surge levels Use NEMA-rated enclosures that protect against water damage Factor equipment repair or replacement in O&M plans	Use NEMA-rated enclosures to minimize exposure to debris Design EMS or protection systems to shut down at harmful wind speeds or conditions.	Utilize shock-mount system enclosures to maintain integrity of individual system components	Use built-in fire suppression system	Design enclosures to withstand snow/ice loads Design with sealings and verting to address moisture Use NEMA-rated enclosures to minimize exposure to moisture	Design protection or EMS to withstand extreme temperatures Design system to shut down to protect component integrity	
Biogas/Biom ass CHP	Elevate equipment and biomass stockpiles above flood levels For biogas, coordinate with the wastewater tre atment on potential planned shutdowns	For biogas, use rigid covers to protect digester tanks For biomass, cover or protect onsite fuel supply stockpiles	Maintain industry standards for facilities sited near seismic activity	 For biomass, use enclosures, fire protection, or containment strategies for fuel supply. 	Design with proper freeze protection Protect biomass stockpiles from excess snow and ice	Use heating jackets designed for optimal temperatures and adequate thermal management systems Ensure systems are designed for regional temperature ranges	
Distributed Solar	Design systems and framing for easy runoff and drainage, especially for commercial rooftop systems with flat roofs - For ground mount, avoid siting in flood zones	Use secure, flush-mounted systems for rooftop solar Use flexible racking and anchoring systems Maintain ASCE standards for rooftop systems based on expected wind loads	Ensure roof mount design meets ASCE building code for seismic areas	 If ground-mount, site in open areas away from flammable material (trees, shrubs, etc.) 	 Manually remove snow/ice to clear panels Automonous mechanical cleaning (tiled removal) Install bifacial systems capable of absorbing irradiance on the back or front of panels. 	 Ste systems in applicable weather conditions Enhance design to maximize cooling and airflow in order to ensure optimal temperature conditions for modules and electrical components (inverters) 	
Distributed Wind	Design foundation for conditions in high water table Elevate controls and electronics above flood and storm surge levels Use site drainage strategy	 Include de sign features and braking procedures to withstand hurricane force winds (feather blades, lock rotors, change orientation, etc.) 	Design systems for ground acceleration rating based on typical seismic activity	• Extend gravel apron around base of turbine	Install electro-thermal ice protection systems Use ice-resistant coating on blades	Design uninterruptible power supply to operate within adequate temperature range Add on "cold weather packages"	
Natural Gas CHP	Elevate equipment above flood and storm surge levels	Locate systems indoors or protect with containers designed to withstand high wind and debris	 Shock-mount system enclosures Maintain industry standards for pipelines sited near seismic activity 	 Use fire protection systems for above-ground facilities associated with gas delivery networks 	 No additional design consideration needed 	To ensure fuel availability, purchase "firm supply" to avoid curtailment	
Standby Generators	Elevate equipment above flood and storm surge levels Store enough fuel onsite to avoid delivery issues	Locate systems indoors or protect with containers designed to withstand high wind and debris	Purchase an earthquake- resistant model (IBC certified; subject to shake table testing)	Avoid siting in areas prone to wildfire Store enough fuel onsite to avoid delivery issues	Store enough fuel onsite to avoid delivery issues	Check generator batteries during cold weather Enclose the system to protect from temperatures. Store "winter diesel" fuel in cold climates with additives to prevent gelling	

Other Resources: Packaged CHP Accelerator

Goals

- Research and validate that total project costs and installation times for packaged CHP systems can be reduced by 20% or more
- Evaluate the integration of new technologies with packaged CHP systems and identify R&D challenges and opportunities around packaged CHP and related technologies

Partners

CHP Supplier Partners – CHP

system packagers and solution providers participating in the national eCatalog of packaged CHP systems

CHP Engagement Partners –

Utilities, federal agencies, states, cities or other market entities committed to promoting packaged CHP (via the eCatalog)

PACKAGED COMBINED HEAT AND POWER

Standardized, packaged CHP systems can overcome numerous barriers to CHP installations in commercial, institutional, multifamily, light industrial, and Federal applications by reducing design errors, limiting uncertainty about projected performance, shortening project install time, streamlining permitting, and reducing the overall cost. Partners will validate that installation times and total project costs for pre-engineered, technically-validated packaged CHP systems can be reduced by 20% or more. Partners will also evaluate the integration of new technologies with packaged CHP systems and identify R&D challenges and opportunities around packaged CHP and related technologies.

Visit the Packaged CHP Accelerator Website: https://betterbuildingsinitiative.energy.gov/accelerators/packaged-chp

Other Resources: Sustainable Water Infrastructure of the Future (SWIFt) Accelerator

- Goals
 - Catalyze the adoption of innovative and best-practice approaches in data management, technologies, and financing for infrastructure improvement
 - Improve the energy efficiency of the partners' participating water resource recovery facilities by at least 30% and integrate at least one resource recovery measure
- Accelerator Partners
 - State, regional, and local agencies engaging with water resource recovery facilities in their jurisdiction to accelerate a pathway toward a sustainable infrastructure
- Energy Data Management Manual for the Wastewater Treatment Sector
 - Step-by-step guide for wastewater treatment plants on how to appropriately track energy performance
 - Describes the benefits of energy data management, and how it can help drive savings when linked to a strong energy management program

Visit the Sustainable Water Infrastructure of the Future (SWIFt) Accelerator Website: <u>https://betterbuildingsinitiative.energy.gov/accelerators/packaged-chp</u>

Anne Hampson Anne.Hampson@icf.com 703-934-3324

